记者6月19日从中国科学技术大学获悉,该校教授潘建伟、苑震生等在超冷原子量子计算和模拟研究中取得重要进展。他们在理论上提出并实验实现原子深度冷却新机制的基础上,在光晶格中首次实现了1250对原子高保真度纠缠态的同步制备,为基于超冷原子光晶格的规模化量子计算与模拟奠定了基础。国际著名学术期刊《科学》于北京时间6月19日在线发布了该研究成果。
基于量子力学的基本原理,量子计算和模拟被认为是后摩尔时代推动高速信息处理的颠覆性技术,有望解决诸如高温超导机制模拟、密码破解等重大科学和技术问题。量子纠缠是量子计算的核心资源,量子计算的能力将随纠缠比特数目的增长呈指数增长。因而,大规模纠缠态的制备、测量和相干操控是该研究领域的核心问题。受限于纠缠对的品质和量子逻辑门的操控精度,目前人们所能制备的最大纠缠态距离实用化的量子计算和模拟所需的纠缠比特数和保真度还有很大差距。
自2010年开始,中科大研究团队与德国海德堡大学合作,对基于超冷原子光晶格的可拓展量子信息处理展开联合攻关。该团队首次提出了使用交错式晶格结构将处在绝缘态的冷原子浸泡到超流态中的新制冷机制,通过绝缘态和超流态之间高效率的原子和熵的交换,使系统中的热量主要以超流态低能激发的形式存储,再用精确的调控手段将超流态移除,从而获得低熵的完美填充晶格。
中科大在超冷原子量子计算与量子模拟领域取得重要进展(上接1版)该实验实现了这一制冷过程,制冷后使系统的熵降低了65倍,达到了创纪录的低熵,使得晶格中原子填充率大幅提高到99.9%以上。该团队继而开发了两原子比特高速纠缠门,获得了纠缠保真度为99.3%的1250对纠缠原子。
在该研究工作的基础上,研究团队将通过连接多对纠缠原子的方法,制备几十到上百个原子比特的纠缠态,用以开展单向量子计算和复杂强关联多体系统量子模拟研究。同时,该工作中的新制冷技术将有助于对超冷费米子系统的深度冷却,使得系统达到模拟高温超导物理机制的苛刻温区。该研究成果将极大推动量子计算和模拟领域的发展。 (记者 陈婉婉)