科技是第一生产力、人才是第一资源、创新是第一动力 加快建设科技强国,实现高水平科技自立自强
氢能科技 沙蓬绿色种养产业模式 联源科技 超联科技 园区 园区 园区 园区 园区

【中国科学报】科学家展望分子碰撞中量子干涉现象研究

   2021-11-23 中国科学报1版
51
核心提示:近日,中国科学技术大学教授王兴安和中国科学院大连化学物理研究所、南方科技大学杨学明院士应邀在《科学》

近日,中国科学技术大学教授王兴安和中国科学院大连化学物理研究所、南方科技大学杨学明院士应邀在《科学》发表题为“分子双狭缝实验”的评述文章,深入探讨并展望了分子碰撞中的立体动力学与量子干涉现象研究。

1801年,英国物理学家托马斯·杨以著名的杨氏双狭缝实验证实了光具有波动特性。1927年,美国物理学家戴维森、革末通过电子束在金属镍表面的散射行为观测到了电子的波动性。这些实验同20世纪初一系列重要实验共同支撑了“波粒二象性”这一微观描述,推动了现代量子力学的发展。对分子碰撞中量子效应的精确测量和描述,是理解原子分子量子动力学的关键。随着激光、分子束等实验技术的快速发展,科学家已经可以对碰撞分子的量子态和空间取向进行精细调控。

该文章详细介绍了同期《科学》杂志发表的关于分子非弹性碰撞传能过程的立体动力学及量子干涉现象的研究。美国科学家成功实现了对氘气分子的高效振动态激发,并选择性地精准制备了单轴、双轴两种具有不同特性的量子态。研究人员发现处于双轴态的分子在散射中会表现出与单轴态明显不同的实验结果,这一差异来源于双轴态中不同键轴取向之间的量子干涉。这是在分子碰撞体系中首次通过激光制备出类似于杨氏实验的“双狭缝”,进而影响双分子碰撞的微观动力学过程。

文章还重点介绍了一个开展量子干涉以及立体动力学研究的理想化学反应体系:氢原子加氢分子反应及其同位素反应体系。该反应一直是化学动力学领域的重要基准体系,也是实验与理论互动的成功范例。这一系列反应的电子基态和电子激发态的势能面间具有非常著名的锥形交叉,使得氢交换反应体系天然地具备两个不可区分的反应路径。此前,杨学明和王兴安以及合作者通过对两个路径干涉行为的精密测量,成功回答了一直悬而未决的化学反应中的几何相位问题。

结合先进的激光量子态制备和分子空间取向技术,科学家将能通过交叉分子束实验对氢交换等反应开展进一步的精密动力学测量,借助激光选态的双狭缝实验深入理解基元反应的量子干涉行为和立体动力学,有望在未来实现对基元化学反应的立体量子动力学控制。(桂运安)

 
 
更多>同类资讯
推荐图文
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用说明  |  隐私政策  |  免责声明  |  网站地图  |   |  粤ICP备05102027号

粤公网安备 44040202001358号