科技是第一生产力、人才是第一资源、创新是第一动力 加快建设科技强国,实现高水平科技自立自强
氢能科技 沙蓬绿色种养产业模式 联源科技 超联科技 园区 园区 园区 园区 园区

科学家开发出诊断幼儿孤独症谱系障碍的新方法

   2022-12-16 互联网综合消息
31
核心提示:近些年来,全球范围内孤独症谱系障碍(Autism Spectrum Disorder,ASD)患病率均有上升趋势。孤独症已成为严重影响儿童健康的全

近些年来,全球范围内孤独症谱系障碍(Autism Spectrum Disorder,ASD)患病率均有上升趋势。孤独症已成为严重影响儿童健康的全球公共卫生问题,世界卫生组织将其列为儿童精神疾病第一位。目前尚未发现可用于ASD早期诊断的生物标志物,对ASD的诊断主要基于行为学评估,诊断中位年龄约为52个月,使得很多患儿错失了最佳干预治疗的时机。

近日,美国加州大学圣地亚哥分校研究团队在《Molecular Psychiatry》杂志上发表题为“A predictive ensemble classifier for the gene expression diagnosis of ASD at ages 1 to 4 years” 的文章,开发了一种基于白细胞基因表达的智能诊断分析模型有望用于诊断幼儿ASD。

该研究从240名ASD和典型发育(TD)幼儿中收集了临床、诊断和白细胞RNA的数据(175名幼儿数据进行训练,65名进行测试),由3570个基因表达特征选择集和12种分类方法开发了42840个模型,选取了训练集和测试集AUC-ROC≥0.8的742个模型进行加权贝叶斯模型平均化后,生成了智能诊断分析模型。经测试,该模型在训练和测试基因表达数据集中表现准确,ASD诊断分类的AUC-ROC分数为 85-89%,AUC-PR分数为84-92%。除此外,该研究所开发的分析模型不但能够正确地对88%的患有ASD风险基因突变的TD和ASD幼儿进行分类,还在不同年龄、不同种族的幼儿中有较好的诊断效果。

该研究所提出的智能诊断分析模型有望用于ASD儿童的早期筛查和流行病学监测,实现ASD的早发现、早诊断、早干预。

论文链接:

https://www.nature.com/articles/s41380-022-01826-x

注:此研究成果摘自《Molecular Psychiatry》杂志,文章内容不代表本网站观点和立场,仅供参考。

免责声明:本网转载自其它媒体的文章,目的在于弘扬科技创新精神,传递更多科技创新信息,宣传国家科技政策,展示国家科技形象,增强国家科技软实力,参与国际科技舆论竞争,提高国际科技话语权,并不代表本网赞同其观点和对其真实性负责,在此我们谨向原作者和原媒体致以崇高敬意。如果您认为本网文章及图片侵犯了您的版权,请与我们联系,我们将第一时间删除。
 
 
更多>同类资讯
推荐图文
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用说明  |  隐私政策  |  免责声明  |  网站地图  |   |  粤ICP备05102027号

粤公网安备 44040202001358号