科技是第一生产力、人才是第一资源、创新是第一动力 加快建设科技强国,实现高水平科技自立自强
氢能科技 沙蓬绿色种养产业模式 联源科技 超联科技 园区 园区 园区 园区 园区

我国科学家发现大豆能量感受器通过调控碳源分配控制共生固氮的分子机制

   2022-12-28 互联网综合消息
33
核心提示:豆科植物与根瘤菌的结瘤共生固氮体系是自然界中固氮效率最高、农业生产应用最为广泛的生物固氮系统,对保持农业以及自然生态系统

豆科植物与根瘤菌的结瘤共生固氮体系是自然界中固氮效率最高、农业生产应用最为广泛的生物固氮系统,对保持农业以及自然生态系统中的初级生产和碳汇有重要意义。共生固氮消耗的能量主要来源于光合作用所固定的碳水化合物,然而,豆科植物如何依据光合产物供应情况调整根瘤固氮反应速率的分子机制尚待揭示。近期,河南大学研究团队于2022年12月2日在《Science》杂志上发表题为“Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state”的研究论文,揭示了大豆响应碳源供给调控根瘤固氮效能的分子机理。

研究团队在大豆中鉴定了一对在根瘤特异高表达的能量感受器蛋白GmNAS1和GmNAP1。研究发现,GmNAS1可以直接结合AMP从而与GmNAP1在线粒体膜上形成异源二聚体,在碳源供应增加导致根瘤能量状态上升时,AMP含量降低,促使GmNAS1-GmNAP1异源二聚体解离,形成GmNAS1-GmNAS1和GmNAP1-GmNAP1同源二聚体,之后形成的同源二聚体会与一个转录因子GmNFYC10a互作并将其锚定到线粒体上,从而减少细胞核中的GmNFYC10a水平,抑制丙酮酸激酶基因表达,进而减少了磷酸烯醇式丙酮酸向丙酮酸的转化,使更多磷酸烯醇式丙酮酸转化为草酰乙酸和苹果酸,从而增强类菌体的碳源供应和根瘤固氮能力。

这项研究为设计合成高效利用碳源的共生固氮系统提供了重要依据,为高效固氮作物的分子设计提供了新的思路。

论文链接:

https://www.science.org/doi/10.1126/science.abq8591

注:此研究成果摘自《Science》杂志,文章内容不代表本网站观点和立场,仅供参考。

免责声明:本网转载自其它媒体的文章,目的在于弘扬科技创新精神,传递更多科技创新信息,宣传国家科技政策,展示国家科技形象,增强国家科技软实力,参与国际科技舆论竞争,提高国际科技话语权,并不代表本网赞同其观点和对其真实性负责,在此我们谨向原作者和原媒体致以崇高敬意。如果您认为本网文章及图片侵犯了您的版权,请与我们联系,我们将第一时间删除。
 
 
更多>同类资讯
推荐图文
推荐资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用说明  |  隐私政策  |  免责声明  |  网站地图  |   |  粤ICP备05102027号

粤公网安备 44040202001358号