中国科学院金属研究所研究员李瑛、唐奡带领团队在新型低成本铁基液流电池储能技术研究领域取得新进展。近日,相关研究成果分别发表于《化学工程杂志》(Chemical Engineering Journal)和《微尺度》(Small)。
据了解,在诸多新型储能技术路线中,以全钒液流电池为代表的液流电池储能技术,本质安全、可灵活部署,成为长时储能技术中的首选电化学储能技术路线。研发低成本液流电池新体系、新技术,是解决现阶段液流电池产业化发展瓶颈问题的有效途径。
研究发现,全铁液流电池以低成本氯化亚铁作为活性物质,有效避免了正负极交叉污染,但受制于铁负极电化学反应可逆性差的制约,现有性能无法满足应用要求。
为此,研究人员通过在电极界面进行金属刻蚀处理,使得电极纤维表面富含缺陷结构,有效调控了铁离子在电极界面的沉积反应成核特性,促进了铁沉积反应均一性及氧化还原反应动力学,并利用理论计算和仿真分析揭示了铁离子在碳缺陷处的杂化作用增强机制及铁沉积过程演化规律。
在此基础上组装的全铁液流电池实现了每平方厘米80毫瓦的功率密度和250圈循环99%的电流效率,循环稳定性有效提升了10倍。研究结果证明,电极界面优化设计可有效提升铁负极性能,为实现全铁液流电池高效稳定运行提供了新途径。
研究还发现,电极设计策略有效提升了全铁液流电池的循环性能指标,但受水系电解液0℃凝固的制约,全铁液流电池在高寒地区的低温运行仍难以实现。弱化水分子间相互作用、降低电解液凝固点,是解决上述问题的首要途径。
为此,研究人员通过在溶液中引入极性溶剂,利用极性分子与氢键相互作用,成功弱化了溶液的水合氢键网络,将电解液凝固点有效降低到-20℃以下,协同提升了铁负极电化学可逆性,首次实现了全电池在-20℃低温条件下稳定运行100小时。研究结果为宽温域全铁液流电池技术产业化开发与应用推广奠定了技术基础。
相关论文信息:
https://doi.org/10.1016/j.cej.2024.150592
https://doi.org/10.1002/smll.202307354
免责声明:本网转载自其它媒体的文章,目的在于弘扬科技创新精神,传递更多科技创新信息,宣传国家科技政策,展示国家科技形象,参与国际科技舆论竞争,并不代表本网赞同其观点和对其真实性负责,在此我们谨向原作者和原媒体致以崇高敬意。如果您认为本网文章及图片侵犯了您的版权,请与我们联系,我们将第一时间删除。