.h1 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 22pt; MARGIN: 17pt 0cm 16.5pt; LINE-HEIGHT: 240%; TEXT-ALIGN: justify
}
.h2 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 16pt; MARGIN: 13pt 0cm; LINE-HEIGHT: 173%; TEXT-ALIGN: justify
}
.h3 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 16pt; MARGIN: 13pt 0cm; LINE-HEIGHT: 173%; TEXT-ALIGN: justify
}
DIV.union {
FONT-SIZE: 14px; LINE-HEIGHT: 18px
}
DIV.union TD {
FONT-SIZE: 14px; LINE-HEIGHT: 18px
}
.h1 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 22pt; MARGIN: 17pt 0cm 16.5pt; LINE-HEIGHT: 240%; TEXT-ALIGN: justify
}
.h2 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 16pt; MARGIN: 13pt 0cm; LINE-HEIGHT: 173%; TEXT-ALIGN: justify
}
.h3 {
FONT-WEIGHT: bold; TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 16pt; MARGIN: 13pt 0cm; LINE-HEIGHT: 173%; TEXT-ALIGN: justify
}
.union {
FONT-SIZE: 14px; LINE-HEIGHT: 18px
}
.union TD {
FONT-SIZE: 14px; LINE-HEIGHT: 18px
}
马克斯·普朗克量子光学研究所以Gerhard Rempe教授为首的研究人员成功地将单个光子的量子态写入一个铷原子中,存储一段时间后又将其读出。他们认为这一方法原理上可用于设计功能强大的量子计算机并实现大距离间联网。
量子计算机能在转瞬之间完成现在的计算机需要数年才能完成的计算量。这种巨大的计算能力得益于量子计算机强大的并行信息处理能力。量子计算机处理的信息以量子态存储于微观物理系统之中,譬如单个原子或光子中。量子计算机要能工作,就必须实现量子计算机不同组成部分之间的信息交换。光子就特别适合用来做信息交换,因为不必用它传输物质。存储和处理信息则相反,要利用物质粒子。因此,研究人员试图找到在光子和物质之间交换量子信息的方法。迄今为止,单个原子和光子之间以可控方式实现量子信息交换却一直未获成功。这一次马普量子光学所的研究人员首次以可控方式成功实现了单个原子和光子之间的量子信息交换。
免责声明:本网转载自其它媒体的文章,目的在于弘扬科技创新精神,传递更多科技创新信息,并不代表本网赞同其观点和对其真实性负责,在此我们谨向原作者和原媒体致以崇高敬意。如果您认为本站文章侵犯了您的版权,请与我们联系,我们将第一时间删除。